Wednesday 12 October 2011

DNA BASE COMPOSITION HETEROGENEITY IN MANGROVES

 


International Journal of Biological Chemistry, 2011
ISSN:1819-155X /Doi: 10.3923/ijbc 2011

DNA Base Composition Heterogeneity in Two Avicennia Species in Response to Nitrogen Limitation in the Sundarban Mangrove Forest, India
N. Majumder, C. Chowdhury, R. Ray and T. K. Jana *
Department of Marine Science, Calcutta University, 35,
B. C. Road
The influence of ecological nitrogen limitation on the composition of plant genomes is still unclear. This study aimed to find the role of nitrogen source in the Sundarbans on the genomic nitrogen and base heterogeneity in the leaf and root DNA of two Avicennia species. DNA in mangrove leaf and roots were quantified by spectrophotometric method. The quantitative determination of individual bases in the DNA after acid-hydrolysis was accomplished by reverse phase high-pressure liquid chromatography with UV detection. DNA was digested with alkaline persulphate solution in an autoclave and P and N concentration in the digest were determined using spectrophotometric method. For total inorganic nitrogen, soil sample was extracted in 2M potassium chloride solution and ammonia-nitrogen, nitrite & nitrate-nitrogen were determined in the extract by using spectrophotometric method. Inorganic nitrogen concentration in sediment was found low (4.04 ± 1.06 μg g-1) and it exhibited positive linear relation with DNA nitrogen extracted from leaf (DNA-N=0.005+0.057 Sed-N, R2 =0.8) and root (DNA-N = -0.113+0.079 Sed-N, R2 =0.9). N: P ratios in DNA were <4. In contrast to the roots (A-T 57.63-59.01%; G-C 40.89-42.34%), the percentage of G-C-base pairs in leaves (58.42-64.38%) was greater than the percentage of A-T-base pairs (35.58-41.57%). Low abundance of nitrogen in the soil results in the occurrence of N-poor nucleotides in root DNA. The mangroves seem to assimilate nitrogen from both soil and the atmosphere with atmospheric NOx uptake playing a greater role in leaf protein content than soil inorganic nitrogen. This study supports the hypothesis that higher levels of DNA with N-rich nucleotides in leaves relative to roots are necessary for enhance synthesis of protein to offset damage by photochemical processes.

Thursday 18 August 2011

Antimony,Biogeochemistry, Sundarban,



Journal of Environmental Protections, 2011, 2, **-** doi:10.4236/jep.2011.***** Published Online August 2011 (http://www.SciRP.org/journal/jep) Copyright © 2011 SciRes. JEP 1

 Distribution of Antimony in a Tropical Estuary Dominated by Mangroves

Sanjay K. Mandal, Natasha Majumder, Chumki Chowdhury, Raghab Ray, Manab K. Dutta, Tapan K. Jana

Department of Marine Science, Calcutta University, Kolkata, India.
Email: tkjana@hotmail.com
Received **************2011.


ABSTRACT
Seasonal variation of antimony was studied in order to characterize its distribution in estuarine water, pore water, sediment, and digenetic behavior in the Sundarbans mangrove ecosystem. The mean concentration of dissolved inor- ganic Sb ranged between 230.8 and 303.1 ng·L–1 over the period of study with a minimum during the post-monsoon closely associated with spring diatom bloom. Molecular diffusion flux of Sb was found greater than its value advected and deposited on sediment-water interface and there was significant remobilization of Sb in the Sundarbans mangrove ecosystem.

Monday 18 July 2011

Copper, Cobalt, Zinc, Phosphorous, Arsenic, Adsorption, mangrove sediment, Sundarbans


Adsorption kinetic control of As(III & V) mobilization and sequestration by Mangrove sediment

 S. K. Mandal • N. Majumder • C. Chowdhury •
 D. Ganguly • M. Dey • T. K. Jana

Environ Earth Sci, Springer,2011
DOI 10.1007/s12665-011-1183-9


Abstract:

Elevated concentrations of arsenic in the sediment and pore water in the Sundarban wetlands pose and environmental risk. Adsorption and desorption are hypothesized to be the major processes controlling arsenic retention in surface sediment under oxic/suboxic condition. This study aims to investigate sorption kinetics of As(III&V) and its feedback to arsenic mobilization in the mangrove sediment. It ranges from sand to silty clay loam and shows theadsorption of As(III & V) following the Langmuir relation. Estimates of the maximum adsorption capacity are59.11 ± 13.26 lg g-1 for As(III) and 58.45 ± 8.75 lg g-1 at 30_C for As(V) in the pH range 4 to 8 and salinity 15–30 psu. Extent of adsorption decreases with increasing pH from 4 to 8 and desorption is the rate-limiting step in the reaction of arsenic with sediment. Arsenic in the sediment could be from a Himalayan supply and co-deposited organic matter drives its release from the sediment. Arsenic concentration in the sediment is well below its maximum absorption capacity, suggesting the release of sorbed arsenic in porewater by the microbial oxidation of organic matter in the sediment with less feedback of adsorption

Wednesday 6 July 2011

Cell Size versus Taxonomic Composition as Determinants of As (III & V) Sensitivity in the Estuarine Diatom Communities

 
Journal of Water Resource and Protection, 2011, 3, 363-369 doi:10.4236/jwarp.2011.36046 Published Online June 2011 (http://www.scirp.org/journal/jwarp) Copyright © 2011 SciRes. JWARP
 Cell Size versus Taxonomic Composition as Determinants of As (III & V) Sensitivity in the Estuarine Diatom Communities
Chumki Chowdhury, Natasha Majumder, Sanjay Kumar Mandal, Manab Kumar Dutta, Raghab Ray, Tapan Kumar Jana*
Department of Marine Science, Calcutta University, Kolkata, India
E-mail: tkjana@hotmail.com
Received March 15, 2011; revised April 17, 2011; accepted May 20, 2011
Abstract
Despite scarce studies have analyzed the relative growth inhibition of As (III) and As (V) to diatom, clear pattern of interspecies difference have been shown, identifying cell size as a key property determining the sensitivity of diatom to As. Evidence from cultures suggests that cell size is a key factor in determining the extent of arsenic (III) & (V) stress of diatom, with relatively lesser effects of As (V) than As (III) on small cells. Cent percent growth inhibition was observed for large size group (Coscinodiscus radiatus, Surirella., Amphipleura, Thalassiothrix, Cyclotella and Thalassiosira decipiens) relative to smaller size group (Skele-tonema cf. costatum, Navicula rhombica, Amphora hyalina Nitzschia longissima except Thalassisira. Inter-species differences in As tolerance by diatom in the mangrove ecosystem indicates cell size could be only one factor contributing to these differences. The results show that 81.7% of total arsenic was uptaken from culture media originally amended with arsenic. Looking to the extreme tolerance and arsenic removal effi-ciency, application of the species with smaller cell size relative to the other tested diatom for bioremediation purpose can be envisaged.
Keywords: Diatoms, Cell Size, Arsenic (III&V), Mangrove

Thursday 9 June 2011

Coupled micrometeorological and biological processes on atmospheric CO2
concentrations at the landeocean boundary, NE coast of India

D. Ganguly a, M. Deya, C. Chowdhury a, A.A. Pattnaik b, B.K. Sahu b, T.K. Jana

a Department of Marine Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
b Department of Marine Science, Berhampur University, Bhanja Bihar, Orissa, India

a b s t r a c t

This study reveals that landesea breezes, atmospheric stability and influence of net ecosystem metabolism for the conversion of organic carbon to atmospheric CO2 are the major driving forces behind the variation of atmospheric CO2 at the landeocean boundary, northeast coast of India. The seasonal variation of partial pressure of CO2 (pCO2) and its efflux from the coastal water were several fold higher in the pre-monsoon (1807.9 _ 757.03 m atm; 579.03 _ 172.9 mM m_2 h_1) than in the monsoon (1070.5 _ 328.5 m atm; 258.96 _ 185.65 mM m_2 h_1) and the post-monsoon (615.7 _ 121.6 m atm; 53.27 _ 19.24 mM m_2 h_1). The mean photic zone productivity to column respiration ratio was 0.12 _ 0.08, revealing predominance of heterotrophic processes. Community respiration was at minimum during monsoon (38.82 _ 8.63 mM C m_2 d_1) but was at maximum (173.8 _ 111.8 mM C m_2 d_1) during pre-monsoon and intermittent (125.07 _ 11.97 mM C m_2 d_1)during post-monsoon. Diurnal variations of atmospheric CO2 concentration were determined by local air circulations and atmospheric stability. Seasonal variations of atmospheric CO2 bear a significant signature of biological processes occurring in the coastal water by means of airesea exchange, markedly affected by the net ecosystem metabolism. Important predictors of coastal atmospheric CO2 in decreasing order of explained variability are wind direction, stability, CO2 efflux and wind velocity.
_ 2010 Elsevier Ltd. All rights reserved.

D. Ganguly et al. / Atmospheric Environment 45 (2011) 3903e3910

Friday 13 May 2011

Indian Sundarbans mangrove forest sequesters 2.79 million ton Carbon annually.

Carbon dioxide capture and storage (CCS) is an approach to mitigate climate change by capturing carbon dioxide from large point sources such as power plants and subsequently storing it away safely instead of releasing it into the atmosphere. Aforestation is one of the various possibilities for carbon dioxide sequestration. Tropical forests process about six times as much carbon as the anthropogenic emission. Changes in carbon dynamics in tropical forest with 50% contribution to global terrestrial gross primary production (GPP) could alter the pace of climate change. India’s forest cover (678,333km2) accounts for 20.6% of the total geographical area of the country, and tree cover accounts for 2.8% of India’s geographical area. Over the last two decades, progressive national forestry legislation and policies in India aimed at conservation and sustainable management of forests have reversed deforestation and transformed India’s forests into a significant net sink of carbon dioxide. The carbon stocks stored in our forests and trees are about 6662 million ton with annual increment of 38 million ton of carbon.  Mangrove forest accounts for about 2.4% of tropical forest. The Indian Sundarbans mangrove forest in the estuarine portion of the River Ganges covers an area of 9630 km2 out of which 4264 km2 is law protected forest.  It is the largest delta on the globe and covers about 2.84% of the global mangrove area (15x104 km2). Department of Marine Science, Calcutta University recently studied Sundarbans mangrove forest for its potentiality to sequester anthropogenic carbon dioxide under the National programme on carbon dioxide Sequestration research, funded by DST, Govt. of India. During this study annual net biosphere-atmosphere exchange of carbon dioxide has been quantified to 2.79 million ton  Carbon. The overall carbon storage in the Sundarbans mangrove forest reservoir is estimated to be 21.13 million ton Carbon and in the soil reservoir (30 cm) 5.49 million ton Carbon. It stores 0.41% of the total carbon storage in the Indian forest (6621 million tone Carbon) and uptakes 2.79 million ton Carbon annually which is 0.55 % of the annual fossil fuel emission (504.6 million ton Carbon per annum) from India. Carbon accrual to live biomass is greater by 35 – 48% in the Sundarban mangrove forest than in the Amazonia forest (2.59 -3.24 kilo ton Carbon per hector per annum). Live biomass is about 4 times lower in the Sundarbans than in the Amazonia forest (167 ± 7.1 kilo ton Carbon per hector, but by contrast it shows relatively rapid carbon accrual in live biomass at Sundarbans than at Amazon. This rapid carbon accrual in the Sundarbans results turn over much faster (10 years) than Amazon forest (~50 years), indicating the advantage of mangroves over terrestrial forests for rapid carbon sequestration. This work has been accepted for publication in peer reviewed  international Journal, Ray, R et al., Carbon sequestration and annual increase of carbon stock in a mangrove forest, Atmospheric Environment, Elsevier, 2011, doi:10.1011/j.atmosenv.2011.04.074).

Tuesday 10 May 2011

Carbon sequestration and annual increase of carbon stock in a mangrove forest

 R. Ray, D. Ganguly, C. Chowdhury, M. Dey, S. Das, M.K. Dutta, S.K. Mandal, N. Majumder,  T.K. De, S.K. Mukhopadhyay, T.K. Jana
we show carbon stock is lower in the tropical mangrove forest than in the terrestrial tropical forest and their annual increase exhibits faster turn over than the tropical forest. Variable for above ground biomass are in decreasing order of importance , breast height diameter (d), height (H) and wood density (r). The above ground biomass (AGB) and live below ground biomass (LBGB) held different biomass (39.93 ± 14.05 t C ha-1 versus 9.61 ± 3.37 t C ha-1). Carbon accrual to live biomass (4.71-6.54 Mg C  ha-1 a-1) is more than offset by losses from litter fall (4.85 Mg C  ha-1 a-1), and carbon sequestration differs significantly between live biomass (1.69 Mg C  ha-1 a-1 )  and sediment (0.012 Mg C  ha-1 a-1). Growth specific analyses of taxon density suggest that changes in resource availability and environmental constrains could be the cause of the annual increase in carbon stocks in the Sundarbans mangrove forest in contrast to  the disturbance – recovery hypotheses.


Available online 5 May 2011.

Received 23 December 2010; 
revised 7 April 2011; 
accepted 25 April 2011. 
Atmospheric Enviornment, Elsevier 2011

Thursday 5 May 2011

Mangrove ecosystem (Sundarbans) uptodate State-of-the-art in research activities and publications


PRESENT AFFILIATION:     Professor, Department of Marine Science, Calcutta University, 35. B. C. Road, Kolkata- 700019. Phone No. 91-033-24383875, Fax: 91-033-24614849 email- tkjana@hotmail.com

RESEARCH INTEREST:  
Atmospheric Chemistry, Surface Ocean and Lower Atmospheric Interaction, Mangrove Biogeochemistry, Phytoplankton physiological ecology, Modern foraminifera assembladge, Land Ocean Interactions in the Coastal Zone, India, Trace metal aquatic chemistry, Rhenium Chemistry.

Students obtained Ph. D degree:
Guided as supervisor
             Name                                              
1.  Sandip Kumar Ghosh                  

2. Arunangsu Saha    
                        
3. Haridas Ghatak                             

4. Sandip Mukhopadhyay                 
   (Young Scientist awardee,          
    CSIR)                                                    
5. Haimanti Biswas                            

6. Dipnarayan Ganguly                    

7. Mitali Dey       

8.   Sanjay Kumar Mandal
                         
9. Raghab Ray
Current PhD students:
1) Chumki Chowdhury
2) Natasha Majumder
Guided as Co-supervisor
8.  Abhijit Chatterjee                                
                                  

 
 

List of Publications of Prof. T. K. Jana and his research school
2014-2004:


  1. Raghab Ray, Natasha Majumder, Subhajit Das, Chumki Chowdhury, Tapan Kumar Jana.2014.Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem,east coast of India Marine Chemistry, Elsevier, doi.org/10.1016/j.marchem.2014.04.007
  2. N.Majumder, C. Chowdhury, R. Ray and T.K.Jana. 2014. Quantitative Study of As (V) and As (III) Interaction with Mangrove DNA by Molecular Fluorescence Spectroscopy.Bull Environ Contam Toxicol. DOI 10.1007/s00128-014-1265-y..Springer.
  3. S. Das, D. Ganguly, T. K. Maiti, A. Mukherjee1,T. K. Jana, T. K. De, 2013, A Depth Wise Diversity of Free Living N2 Fixing and Nitrifying Bacteria and Its Seasonal Variation with Nitrogen Containing Nutrients in the Mangrove Sediments of Sundarban, WB, India, Open Journal of Marine Science, 2013, 3, 112-120, doi:10.4236/ojms.2013.32012 Published Online April 2013, (http://www.scirp.org/journal/ojms)
  4.  S. Das, M. De, T. K. Jana and T. K. De. 2013, Environmental influence on cultivable microbial community in the sediment of Sundarban mangrove forest, India,  African Journal of Microbiology Research,   Vol. 7(38), pp. 4655-4665,  DOI: 10.5897/AJMR12.2251 ISSN 1996-0808 ©2013 Academic Journals http://www.academicjournals.org/AJMR  
  5. S, Das, M. De, T. K. De, R. Ray, T. K. Jana, P. K. Ghosh and T. K. Maiti, 2012, Distribution of aerobic and anaerobic bacteria along the intertidal zones of Sundarban mangrove ecosystems, NE coast of Bay of Bengal, India, Indian Journal of Geo-Marine Sciences, 41(5), 405-411
  6.  S. Das, M. De, D. Ganguly, T. K. Maiti, A. Mukherjee, T. K. Jana, T. K. De. 2012, Depth Integrated Microbial Community and Physico-Chemical Properties in Mangrove Soil of Sundarban, India, Advances in Microbiology, 2012, 2, 234-240 doi:10.4236/aim.2012.23028, (http://www.SciRP.org/journal/aim)
  7.  S. Das, M. De, R. Ray, C. Chowdhury, T. K. Jana & T. K. De (2012): Microbial Ecosystem in Sunderban Mangrove Forest Sediment, North-East Coast of Bay of Bengal, India, Geomicrobiology Journal, 29:7, 656-666
  8.  R. Ray, N. Majumdar, C.Chowdhury, T.K. Jana, 2012.Wood chemistry & density: an analog for response to the change of carbon sequestration in mangroves,Carbohydrate Polymer, vol.. 90:102-108. 
  9. Mitali Dey, Dipnarayan Ganguly,Chumki Chowdhury, Natasha Majumder & Tapan Kumar Jana,2012.  Intra-Annual    Variation of Modern Foraminiferal Assemblage in a Tropical Mangrove Ecosystem in India,Wetlands,Springer. DOI 10.1007/s13157-012-0312-x.
  10. Chumki Chowdhury ,Natasha Majumder, Raghab Ray, Tapan Kumar Jana.2012.Inter-annual abundance variation in some genera of diatom and zooplankton in a mangrove ecosystem.Biodiversity and Conservasion,springer, vol.21:2029–2043 DOI 10.1007/s10531-012-0295-1.
  11. S. Das, M. De, R. Ray, D. Ganguly, T. K. Jana, T.K. De, 2011, Salt tolerant culturable microbes accessible in the soil of the Sundarban Mangrove forest, India, Open Journal of Ecology.Vol.1, No.2, 35-40, doi:10.4236/oje.2011.12004
  12. T. K. De, M. De, S. Das, C. Chowdhury, R. Ray, T. K. Jana, 2011 Phytoplankton abundance in relation to cultural eutrophication at the land-ocean boundary of Sunderbans, NE Coast of Bay of Bengal, India, J Environ Stud Sci. DOI 10.1007/s13412-011-0022-3 , Springer
  13.  S. Das, T. k. Sarkar, M. De, D. Ganguly, T. k. Maiti, A. Mukherjee, T. K. Jana, T. K. De, 2011.Depth profile exploration of enzyme activity and culturable microbial community from the oxygen-starved soil of Sundarban mangrove forest, India, Open Journal of Ecology, Vol.1, No.3, 65-72 , doi: 10.4236/oje.2011.13009
  14. S. K. Mandal, , N.Majumder, C. Chowdhury, R.Ray, M.K.Dutta andT.K.Jana 2011 Distribution  of Antimony in  a   Tropical estuary dominated by mangroves Journal of Enviornmental  Protection ,  Scientific Research, vol. 2: 840-847.
  15. C. Chowdhury ,  N. Majumder , S. K. Mandal , M.K. Dutta , R. Ray and T.K. Jana. 2011. Cell size versus taxonomic composition as determinanats of As (III & V) sensitivity , Journal of Water Resource and Protection , 2011, 3, 363-369 Scientific Research, vol. 3 : 363-369.
  16.  R. Ray, D. Ganguly, C. Chowdhury, M. Dey, S. Das, M.K. Dutta, S.K. Mandal, N. Majumder, T.K. De, S.K. Mukhopadhyay and T.K. Jana. 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest Atmospheric Environment, vol. 45:5016-5024.
  17. D. Ganguly, M. Dey, C. Chowdhury, A. A. Pattnaik, B. K. Sahu, T. K. Jana. 2010. Coupled micrometeorological and biological processes on atmospheric CO2 concentrations at the land-ocean boundary, NE coast of India, Atmospheric Environment, , doi:10.1016/j.atmosenv.2010.08.047.
  18.  H. Biswas, M. Dey, D. Ganguly, T. K. De, S. Ghosh, T. K. Jana. 2010. Comparative Analysis of Phytoplankton       Composition and abundance over a two-decade period at the land-ocean boundary of a tropical mangrove ecosystem, Estuaries and Coasts, Springer,  Volume 33,  Page 384-394, Issue 2DOI 10.1007/s12237-009-91935
  19. D. ganguly, M. Dey, S. Sen,  and T. K. Jana. 2009. Biosphere-Atmosphere exchange of NOx in the tropical mangrove forest Journal of Geophysical Research (American Geophysical Union), Vol. 114, G04014, doi:10.1029/2008JG000852.
  20.  S. K. Mandal, Mitali Dey, D. Ganguly, S. Sen, T. K. Jana.2009. Biogeochemical controls of arsenic occurrence and mobility in the Indian Sundarban mangrove ecosystem, Marine Pollution Bulletin, Elsevier,58, 652-657 doi10.1016/j.marpolbul.2009.01.010
  21. C. Dutta, D. Som, A. Chatterjee, A. K. Mukherjee, T. K. Jana and S. Sen. 2009. Mixing ratios of carbonyls and  BTEX in ambient air of Kolkata, India and their associated health risk. Environ. Mont. Assess. (Springer Science),  January, DOI 10.1007/s10661-007-0142-0, 148, 97-107.  
  22. D. Ganguly, M. Dey, S. K. Mondal, T. K. De and T. K. Jana. 2008. Energy dynamics and its implication to biosphere-atmosphere exchange of CO2, H2O and CH4 in tropical mangrove forest canopy, Atmospheric Environment (Elsevier), 42 (18) 4172 – 4184.
  23. T. K. Jana, H. Biswas and T. K. De, 2007. Time series observation on phytoplankton dynamics at the land-ocean boundary condition of Sundarban Mangrove Forest, NE Coast of Bay of Bengal. Proced. of Chapman Conference on Long Time-Series observation in coastal Ecosystems:Comparative Analyses of phytoplankton Dynamics on Regional to Global Scales held at Rovinj, Croatia on 8-12 October, 2007, pp- 42-43.
  24. H. Biswas, S. K. Mukhopadhyay, S. Sen and T. K. Jana, 2007. Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India. Journal of Marine Systems, ( Elsevier, U. K), 68, 55-64
  25. D. Som, C. Dutta, A. Chatterjee, D. Mallick, T. K. Jana and S. Sen. 2007, Studies on Commuters’ exposure to BTEX in passenger cars in Kolkata, India, Science of the Total Environment, Elsevier, U. K., 372, 2-3, 426-432.
  26. A . Chatterjee, C. Dutta, S. Sen,  K. Ghosh, N. Biswas, D. Ganguly and T. K. Jana. 2006. Formation, transformation, and removal of aerosol over a tropical mangrove forest, Journal of Geophysical Research American Geophysical Union), Vol. 111, D24302, doi: 10.1029/2006JD007144, 1-10
  27. S. K. Mukhopadhyay, H. Biswas, T. K. De and T. K. Jana, 2006. Fluxes of nutrients from the tropical River Hooghly at the land-ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. Journal of Marine Systems, (Elsevier, U. K), Vol. 62, 9-21.
  28. H. Biswas, S. K. Mukhopadhyay, T. K. De, S. Sen and T. K. Jana. 2006. Methane Emission from the wetland Rice Fields in Sagar Island, NE Coast of Bay of Bengal, International Journal of Agricultural Research, Academic Journals Inc. USA, 2006. 1(1): 76-84
  29. H. Biswas, A. Chatterjee, S. K. Mukhopadhya, T. K. De,  S. Sen and T. K. Jana. 2005. Estimation of ammonia exchange at the land-ocean boundary condition of Sundarban mangrove, nortneast coast of Bay of Bengal, India. Atmospheric Environment (Elsevier, U.K.) , 39, 4489-4499.
  30. H. Biswas, S. K. Mukhopadhyay, T. K. De, S. Sen and T. K. Jana, 2004. Biogenic controls on the air water carbon dioxide exchange in the Sundarban Mangrove environment, NE coast of Bay of Bengal, India. Limnology and Oceanography ( American Society of Limnology and Oceanography) 49: 95 –101
  31. H. Ghatak, S. K. Muukhopadhyay ,T. K. Jana, B. K. Sen and S. Sen. 2004. Interaction of Cu(II), Fe(III) with mangal humic substances studied by synchronous florescence spectroscopy and potentiometric titration. Wetland Ecology and Management (Kluwer Academic Publisher). 12: 145-155
  32. T. K. Jana, H. Ghatak, S. K. Mukhopadhyay, H. Biswas, T. K. De and S. Sen, 2004. Studies on the complexation of humic substances with metals and their effects on the bioavailability and toxicity of metals in the mangrove environment of Sundarban, India, International Workshop on Marine Pollution and Ecotoxicology, 25-26 February, 2004 National Institute of Oceanography, Goa , p8.
  33. T. K. De, H. Biswas and T. K. Jana, 2004. International Workshop on Marine Pollution and Ecotoxicology, 25-26 February, 2004 National Institute of Oceanography, Goa , p234
  34. H. Biswas, S. K. Mukhopadhyay, T. K. De, S. Sen and T. K. Jana, 2004. Methane emission from the wetland rice fields in Sagar Island, NE coast of Bay of Bengal, India, International Workshop on Marine Pollution and Ecotoxicology, 25-26 February, 2004 National Institute of Oceanography, Goa , p238.
  35. S. K. Mukhopadhyay and T. K. Jana. 2004 Methane dynamics in the Hooghly estuary, Northeast coast of the Bay of Bengal, India, International Workshop on Marine Pollution and Ecotoxicology, 25-26 February, 2004 National Institute of Oceanography, Goa , p245.                                                                                                                                                                  2003-1998                                                        
  36. H. Biswas, S. K. Mukhopadhya, S. Sen, T. K. De and T. K. Jana. 2003. Role of Cyanobacteria in Maintaining the Nutrient Status of the Soil of the Reclaimed Areas of Sundarbans Mangrove, Proc. Of National Seminar on Biodiversity, Conservation & Management, 24-27 November, 2000. Environmental Planning & Coordination Organization, Bhopal pp. 189-195.
  37. S. K. Mukhopadhyay, H. Biswas, T. K. De, B. K. Sen, S. Sen and T. K. Jana, 2002. Impact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ration at the NE coast of Bay of Bengal, India. Atmospheric Environment (Elsevier Science Ltd., U. K.), 36: 629 – 638
  38. H. Ghatak, S. K. Mukhopadhyay, H. Biswas, S. Sen  and T. K. Jana. 2002. Quantitative study of Co(II) complexation by synchronous florescence spectroscopy with Sundarban mangrove habitat humic substances, Indian Journal of Marine Sciences (CSIR), 31(2): 136 –140.
  39. S. K. Mukhopadhyay, H. Biswas, T. K. De, S. Sen and T. K. Jana, 2001, Seasonal effects on the air-water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. Journal of Environmental Monitoring (The Royal Society of Chemistry, U. K.) 4(4): 549 – 552.
  40. Saha, S. K. Mukhopadhyay & T. K. Jana, 2000. Physico-chemical characterization of the extrapallial fluid of a common tellinid bivalve macoma birmanica (Philippi) in the mud flat of sundarban mangrove, Bay of Bengal. Indian Journal of Marine Science (CSIR), 29:158-164.
  41. S. K. Mukhopadhyay, T. K. Jana, T. K. De & S. Sen, 2000. Measurment of exchange of CO2 in mangrove forest of sundarbans using micrometeorological method. Tropical Ecology ,(International society of Tropical Ecology) 41 (I): 57 - 60.
  42. R. Bhowmik, R. Mondal, T. K. Jana, B. K. Sen, S. Sen, 2000. Ecotoxic metals in the dust fall of Calcutta atmosphere, Indian J. Environmental Protection, Vol 20 (I) : 54-58.
  43. Saha, S. K. Mukhopadhyay & T. K. Jana, 2000. Physico-chemical characterization of the extrapallial fluid          of a common tellinid bivalve macoma birmanica (Philippi) in the mud flat of sundarban mangrove, Bay of Bengal. Indian Journal of Marine Science (CSIR), 29:158-164.
  44. K. Mukhopadhyay, T. K. Jana, T. K. De & S. Sen, 2000. Measurment of exchange of CO2 in mangrove forest of sundarbans using micrometeorological method. Tropical Ecology ,(International society of Tropical Ecology) 41 (I): 57 - 60.
  45. R. Bhowmik, R. Mondal, T. K. Jana, B. K. Sen, S. Sen, 2000. Ecotoxic metals in the dust fall of Calcutta atmosphere, Indian J. Environmental Protection, Vol 20 (I) : 54-58.
  46. S. K. Mukhopadhyay, H. Biswas, K. L. Das, T. K. De, T. K. Jana, 1999. Diurnal variation of carbon dioxide and methane exchange above sundarban mangrove forest, in   NW Coast of India. Indian J. Marine Sciences (CSIR), Vol 30: 70-74.
  47. A. Saha & T. K. Jana, 1999. Biocalcification of aragonite by tellinid bivalve Macoma birmanica (Philippi) on the tidal mudflat in the Sundarban mangrove    forest, North-east Coast of India. Indian J. Marine Sciences (CSIR), vol-28:404-407.             1997-1992
  48. T. K. De and T. K. Jana, 1996. Phytoplankton pigments in the Hugli estuary (North-East Bay of Bengal), India. Sea explorers, 3:16-20.
  49. S. K. Ghosh, A. Saha and T. K. Jana, 1995. Chemical composition and solubility of biogenous calcium carbonate in the estuarine waters of the Hugli river, India, Indian J. Marine Sciences (CSIR ), 24 : 128-132. 1994-1990
  50. T. K. De, A.  Choudhury and T. K. Jana, 1994. Phytoplankton community organization and species diversity in the Hugli estuary, India. Indian J.   Marine Sciences (CSIR), 23:152-156.
  51. S. K. Ghosh and T. K. Jana, 1994. Determination of apparent dissociation constant of carbonic acid in the estuarine water at different salinities and temperatures. Indian J. Marine Sciences (CSIR), 23:126-128.                                              
  52. S. K. Ghosh and T. K. Jana, 1993. Boron-Boric acid complexes in estuarine water of river Hugli, east coast of India, Indian J. Marine sciences (CSIR), 22:225-226.
  53. A. Bhattacharya and T. K. Jana, 1993.Studies on the role of salt tolerant plants in the formation and stabilization of coastal dunes of the Deltaic Sundarbans, South-East Coast of India. In: H. Leith  & A.Al Masoon (Eds.): Towards the rational use of high salinity tolerant plants, vol.1: 363-370. Kluwer Academic Publishers, The Netherlands.
  54. T. K. Jana, R. Choudhury and A. C. Choudhury, 1993. Net primary production, biomass   turnover and transpiration efficiency of  Proterasia coarctata Tokeoka in sundarban mangrove swamps, In: H.Leith and A.Al Masoon (Eds.): Towards the rational use of high salinity   tolerant plants, vol.1: 145-148. Kluwer Academic Publishers, The Netherlands.
  55. S. K. Ghosh, B. Mahapatra, T. K. De, A. Choudhury and T. K. Jana, 1992. Variations of calcite and aragonite saturation in the Hugli estuary; Indian J. Marine Sciences (CSIR), Vol.21: 207-209.
  56. P. S. Manna, S. Sen, S. K. Ghosh and T. K. Jana, 1992. Study of diffusion of oxygen between atmosphere and surface water in    the Hugli estuary, Tropical Ecology, (International society of Tropical Ecology), Vol. 33(2): 186-190.
  57. S. K. Ghosh, T. K. De, A. Choudhury and T. K. Jana, 1992. Distribution of nutrients in estuarine waters of Hugli river, Tropical Ecology, (International society of Tropical Ecology), vol. 33(1): 72-77.                                                              1991-1977
  58. T. K. De, S. K. Ghosh, T. K. Jana and A. Choudhury, 1991. Size-fractionated primary productivity in Hugli Estuary, Mahasagar, National Institute of Oceanography, Goa, India. Vol. 24(2): 127-131.
  59. S. K. Ghosh, T. K. De, A. Choudhury and T. K. Jana, 1991. Semi conservative behavior of Ca and Mg in the Hugli estuary, East coast of India, Indian journal of Marine Sciences (CSIR) Vol. 20, pp 218-220.
  60. S. K. Ghosh, T. K. De, A. Choudhury and T. K. Jana, 1991. Oxygen deficiency in Hugli estuary, east coast of India. Indian Journal of marine Sciences (CSIR) Vol. 20 pp 216-217.
  61. T. K. De, S. K. Ghosh, T. K. Jana and A. Choudhury, 1991. Extinction coefficient and primary productivity in the mixing zone of Hugli estuary, Journal of Aquaculture in the Tropics, Vol. 5, pp 201-206.
  62. T. K. De, S. K. Ghosh, T. K. Jana and A. Choudhury, 1991. Phytoplankton bloom in the Hugli estuary, Indian Journal of marine Sciences (CSIR) Vol. 20 pp 134 –137.
  63. S. Chatterjee and T. K. Jana, 1990. Distribution of free, poly and combined form of phosphate-phosphorus in riverine zone of Hugli estuary, Indian Journal of Landscape systems and Ecological studies, Institute of Landscape, Ecology & Ekistics, India, Vol. 13 No.11 pp 22-29.
  64. A. Debgowsami, A. Choudhury and T. K. Jana, 1990. Calcification and organic carbon metabolism in a coral reef at Chidiyatapu in South Andaman, Journal of Ecobiology, 2(1), pp 9-14.
  65. T.K. De, T. K. Jana and A. Choudhury, 1990. Control of Primary productivity by suspended particulate matter in the Hugli estuary , India, , Tropical Ecology, (International society of Tropical Ecology), vol. 31(2) pp 98-103. 1989-1985
  66. S. K. Ghosh, T. K. Jana, and A. Choudhury, 1989. Distribution coefficient of magnesium between biogenous calcium carbonate and ambient water of Sundarbans mangrove ecosystem, India, The Philippin Journal of Science, Vol. 118, 4, pp 381-389.
  67. A. Saha, T K Jana, and A. Choudhury, 1986. The extrapallial fluid of Macoma barmanica : An environment of calcium carbonate deposition. The Phillipin Journal of Sciences, Vol. 127, 4, pp 395-399.
  68. T. K. De, S. Ghosh, T. K. Jana, B. N. Singh and A. Choudhury, 1987. The physico-chemical characteristics and primary productivity in waters around Lower long Sands, Hugli estuary, Sundarbans, India, Proc. National Symposium on Marine Resources, Techniques, Evaluation and Management, Waltair, May, 1987, pp 19-21.
  69. S. K. Ghosh, T. K. Jana and A. Choudhury, 1987. Infrared absorption and chemical composition of skeletal carbonate of Macoma barmanica from mudflats of  Hugli estuarine deltas, Proc. National Seminar on Estuarine Management, Trivandam, pp 147-148.
  70. S. K. Ghosh, T. K. Jana, B. N. Singh and  A. Choudhury, 1987. Comparative   study on carbon dioxide system in virgin and reclaimed mangrove waters of Sundarbans during freshet, Mahasagar- Bulletin of the National Institute of Oceanography, 20(3) 155-161. 1984-1977 
  71.     T. K. Jana, S. Sen (nee Rakshit), P. Bandyopadhyay, B. K. Sen, 1984. m- oxo decafluro rhenates (IV), Indian Journal of Chemistry, Vol. 23A pp 689-690.
  72.      T. K. Jana, S.  Rakshit, P. Bandyopadhyay, B. K. Sen, 1981. Nitrosyl rhenium complex: Iodonitrosyl Derivatives,  Z. Anorg. Allg. Chem.(Leipzig) 477, pp 229-234
  73. Sengupta, Caroline Moraes, T. W. Kueishy, V. N. Sankaranarayanan, T. K. Jana, S. W. Nagvi and M. D. Rajagpoal, 1979. Chemical Oceanography of the Arabian Sea, Laccadive Sea, Indian Journal of Marine Sciences, (CSIR) Vol. 8 pp215-221.
  74.   T. K. Jana, S. Rakshit, P. Bandyopadhyay, B. K. Sen, 1977. Fluoronitroso complex of Rhenium, Journal of    Fluorine Chemistry, The Netherlands, Vol. 9 pp 461-470.

Research work cited by others:
1.        Bouillon et al 2003. Global Biogeochemical Cycles, Vol 17(4), P1114, doi:10:1029/2002 GB 002026,2003
2.        Borges et al. 2003. Geophysical Research Letters Vol 30 (11), p 1558, doi:10:1029/2003GL 017143, 2003
3.        The Indian Ocean- a perspective, Vol. -1, Ed. Rabin Sengupta & E. Desa, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi
4.        Estuaries of India: State of the Art Report, ENVIS Publication, Annamalai University & M. En & Forest, New Delhi
5.        Mangroves of India: State of the art Report, ENVIS Publication, Annamalai University & M. En & Forest, New Delhi
6.        The Energetics of Mangrove Forest, Daniel L. Alongi, 2009, Springer Science, Chapter 6, p-137.
7.        SOLAS Publication 2007, SOLAS (Surface Ocean Lower Atmosphere Study ), International Project Office, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, UK, NR4 , 7TJ.
8.         Liu, Ruijiang et al, Performances of Methyl Blue and Arsenic(V) Adsorption from Aqueous Solution onto Magnetic 0.8Ni0.5Zn0.5Fe2O4/0.2SiO2 Nanocomposites. Water, Air, & Soil Pollution. Volume: 225. Issue: 5. 2014.
9.  Chen et al. 2014.Rich soil carbon and nitrogen but lowatmospheric greenhouse gas fluxes
from North Sulawesi mangrove swamps in Indonesia.
Science of the Total Environment.volume 487, issue 1, year 2014, pp. 91 - 96